

School of Civil Engineering and the Environment

Talk

The Rotary Hydraulic Pressure Machine for very low head hydropower sites

James A. Senior, 13/06/2008

Overview

- 1. Introduction
 - Demand for very low head hydropower
- 2. The Rotary Hydraulic Pressure Machine
 - Principle
 - Description
 - Model testing
- 3. Case Study
- 4. Conclusions

Introduction

- Small hydropower: installations under 10MW
- European target: An additional 2.4GW by 2010
- No suitable technology for head range 0 5m
- New technology is one of the FP7 targets

Conventional technologies operate using three principles:

- Impulse, e.g undershot waterwheels, Pelton turbines, Cross flow turbines.
- **Reaction**, e.g. Kaplan turbines
- **Potential**, e.g. Overshot waterwheels

These technologies have been well developed.

Is there a fourth operating principle which has not been commercially exploited?

Operational principle: Hydrostatic pressure

- Force = Pressure x Area
- Power = Force x velocity

>>Introduction >>The Rotary Hydraulic Pressure Machine >>Case study >>Conclusions

The Rotary Hydraulic Pressure Machine Description

>>Introduction >>The Rotary Hydraulic Pressure Machine >>Case study >>Conclusions

Theory

Hub allows maximum force to develop over entire length of the blade, through which RHPM exploits the pressure.

Hub also ensure gradual and constant transition of water surface from upstream to downstream, preventing undue wave generation.

Theory

Water accelerates from v_1 to v_2 Energy equation shows drop in level of: $\Delta d_u = \frac{v_2^2 - v_1^2}{2 a}$

Thus power resulting from pressure is:

$$F_p = \rho g \left(d_1 - d_2 - \Delta d_u \right) A$$

Theory

Reaction of installation to the acceleration of water from v_1 to v_2 - can be thought of as a 'nozzle'.

$$F_A = \rho Q \left(v_2 - v_1 \right)$$

Theory

$$P_{out \ ideal} = (F_P - F_A) \ v_2$$

Model Testing

Conducted with constant water depths whilst increasing rotational speed from stationary to freewheel, at no load

Peak efficiency: 80%, P_{max}: 16.5W, Q_{max}: 18 I/s

Model Testing

Data from Model tests was scaled using Froude scaling laws, maintaining the proportions of the test model:

Scaled prototype head, m	Q _{max} , m³/s per m width	P _{max} , kW per m width	
0.5	0.5	1.4	
1.0	1.3	7.7	
1.5	2.3	21.3	
2.0	3.6	43.7	

In 2m head case, Q_{max} and P_{max} are 300% that of a traditional Zuppinger waterwheel.

Case Study

Site in Southern Germany with: Head – 0.9m Average flow – 10m³/s Width restriction of 6m

The Rotary Hydraulic Pressure Machine for very low head hydropower sites

13.06.2008

Obtained two Quotes for Zuppinger waterwheels

Quotes broken down into 3 cost groups:

- The wheel with RHPM estimated at 50% to 80%
- The inlet not required by RHPM installation
- Common components quoted prices unaltered

	Zuppinger quotes (averaged)	RHPM, best case	RHPM, worst case
Diameter, m	6.25	4.3	4.3
Width, m	6	5.0	5.0
Q _{max} , m³/sec	7.9	10	10
Q _{max,} m ³ /sec per m width of wheel	1.32	2.0	2.0
Wheel efficiency, maximum, %	73	80	80
Gearbox / belts / generator efficiency, %	87	87	87
P _{electrical} , kW	37	54	54
Wheel, €	94,000	47,000	75,200
Inlet, €	15,200	0	0
Common components and installation, €	92,300	92,300	92,300
Total before tax, €	201,500	139,300	167,500
Specific cost, €/ kW installed	5,450	2,650	3,150

Power output: 50% greater

Total cost: 70 – 80% of Zuppinger waterwheel

Specific cost: 50 – 60% of Zuppinger waterwheel

Conclusions

The Rotary Hydraulic Pressure Machine is a novel form of hydropower machine, being driven by the hydrostatic pressure of water, and not impulse, reaction or potential.

It has a higher peak hydraulic efficiency, larger flow capacity, and greater power output than traditional waterwheels.

For a 2m head, these are 80%, $4m^3/s$ and $\sim 45kW$ per metre width respectively.

With an estimated specific cost of $\sim 3000 \in$, the RHPM makes very low head hydropower more economically attractive.

School of Civil Engineering and the Environment

Thank you for your attention!

Questions?

Contact:

James A. Senior Email: jamesasenior@yahoo.co.uk

